

Welcome to libgetar’s documentation!

Introduction

libgetar is a library to read and write GEneric Trajectory ARchives, a
binary data format designed for efficient, extensible storage of
trajectory data.

Contents:

	Installation and Basic Usage
	Installation

	Documentation

	The GETAR file format: GEneric Trajectory ARchives
	The GETAR Format

	GETAR Archives

	Records

	Archive Storage Paths

	Supported libgetar Backends
	Zip

	Tar

	Sqlite

	Directory

	Backend Summary

	Libgetar Python Module: gtar
	Usage

	Tools

	Enums: OpenMode, CompressMode, Behavior, Format, Resolution

	Libgetar C++ API
	GTAR

	Record

	Enums: Behavior, Format, Resolution

	SharedArray

	Known Issues and Solutions
	Zip Central Directories

	Zip vs Zip64

	basic_string::_S_construct null not valid

Indices and tables

	Index

	Module Index

	Search Page

Installation and Basic Usage

Installation

Note

When building the gtar module (even when installing from PyPI), a
working compiler chain is required. This means that, on Mac OSX
systems, you will need to install the XCode command line tools if
they are not already installed.

Versioned releases

Install a released version from PyPI using pip:

pip install gtar

From source

Installing the libgetar python module (gtar) from source is
straightforward. From the root directory of the project:

pip install .
Test installation:
cd
python -c 'import gtar'

Note that trying to run scripts from the libgetar source directory
will not work!

Documentation

Documentation is built using sphinx and doxygen. To build it, use the
Makefile in the doc subdirectory:

cd doc
make html

Note that we use the breathe python package to interface between
sphinx and doxygen. If it isn’t installed (and isn’t available in your
package manager), you can install it easily with pip:

pip install breathe --user

The latest version of the documentation is available online on ReadTheDocs [http://libgetar.readthedocs.io/en/latest/].

The GETAR file format: GEneric Trajectory ARchives

The GETAR Format

The main idea behind GETAR (GEneric Trajectory ARchives;
pronounced like the instrument!) files is to simply use standard data
archival tools and embed a small amount of metadata into the filename
within the archive. To efficiently support large trajectories, the
underlying archive format (.tar.gz, .zip, .7z…) would ideally support
efficient random access to files and should be relatively common so
that generic tools would also be useful. Each backend format has
different performance and stability characteristics; these are
discussed in more detail below.

GETAR Archives

GETAR files are just normal archive files; a list of supported
backends is in the backends section. Data are
stored in individual records, which are simply files in the
archive with a particular naming scheme.

Records

GETAR records consist of three primary pieces of information:

	A name, which indicates what attributes the data are intended to represent

	A resolution, which indicates at what level of detail the data are stored

	A behavior, which indicates how the data are stored over time

Record Names

Record names have no restriction or meaning beyond the overlying
schema (properties named “position” indicate the position of
particles, etc.).

Record Resolutions

There are three values that resolutions can have, two for binary data
and one for text-based data:

	A uniform resolution indicates that the data are binary and that
they represent the entire system.

	An individual resolution indicates that the data are binary and
that they represent individual particles, rigid bodies, types…

	A text resolution indicates that the data are stored in
plaintext and represent the entire system.

Record Behaviors

Record behaviors indicate how data are stored over time.
There are three defined behaviors for different use cases:

	Discretely varying - Data are associated with particular times;
for example, particle positions in a MD simulation

	Continuously varying - Data are generated “asynchronously” with
the simulation; for example, the text printed to standard output
during a HOOMD simulation

	Constant - data are stored only once and do not vary over the
simulation

Archive Storage Paths

Put briefly, the record behavior indicates the directory within the
zip archive where the data are stored and the record name and
resolution are encoded in the filename. In the following paths,
{name} will correspond to the record name, {suffix} will encode the
storage mode of the data (determined by the resolution and binary type
of the data), and {index} is a string which will be discussed further
as needed.

Record filename suffixes are generated based on the resolution and
binary type of the data stored. They are of the form {type}.{res},
where res is “uni” for uniform properties, “ind” for individual
properties, and anything else for text properties. The type field
indicates the binary storage mode of the data and is of the form
{chartype}{bitsize}. Valid values of {chartype} are “i” for signed
integers, “u” for unsigned integers, and “f” for floating point data.
The {bitsize} field is the size of each element in the array of data
in bits. For example, particle positions stored as 32-bit floating
point numbers would be named position.f32.ind. Arbitrary blobs of
binary data could be stored as bytestrings as blob.u8.uni while a
JSON-encoded parameters list could be stored simply as params.json.

Discretely varying data are stored in frames/{index}/{name}.{suffix},
where the index is some meaningful string corresponding to the time of
the data. Continuously varying data are stored in
vars/{name}.{suffix}/{index}, where the index is the string
representation of a natural number. Continuously varying quantities
must have indices which are sequentially ordered beginning at 0 and
are intended to be concatenated for use by readers. Constant
quantities are stored in {name}.{suffix} .

Additionally, a prefix can be prepended to paths to differentiate
records. For example, it could be desirable to store the moment of
inertia of both individual particles as well as rigid bodies within a
system. In this case, particle moments could be stored in
moment_inertia.f32.ind, while rigid body moments could be stored in
rigid_body/moment_inertia.f32.ind .

Supported libgetar Backends

Zip

The zip backend uses zip64 archives (see Zip vs Zip64) to store
data, optionally compressed using the deflate algorithm. The zip
format consists of a series of “local headers” followed by content,
with a central directory at the very end of the file which lists the
locations of all files present in the archive to allow for efficient
random acces. This makes it possible for forcefully-killed processes
to leave zip files without a central index; see
Zip Central Directories.

Performance-wise, the zip format reads, writes, and opens files at a
not-unbearably-slow rate. Its main drawback is the reliance on the
presence of the central directory.

Tar

The tar backend stores data in the standard tar format, currently with
no option of compression. The tar format stores a file header just
before the data of each file, but with no global index in the standard
format. Libgetar builds a global index upon opening a tar file, which
consists of scanning through the entire archive file by file. Tar
files should be robust to process death; in the worst case, only part
of the data of a file is written.

The tar format involves the least overhead of any libgetar backend, so
it is fast to read and write. However, building the index quickly
becomes time-consuming for large archives with many files stored
inside, causing file opens to be slow.

Sqlite

The sqlite backend stores data in an sqlite database. Currently, each
write is implemented as a transaction, which causes the write speed to
be low for large numbers of records (see the sqlite faq [https://www.sqlite.org/faq.html#q19]). Data are stored uncompressed
or compressed with LZ4 and LZ4HC [https://github.com/Cyan4973/lz4].
Unfortunately, storing data in sqlite breaks the ability to use common
archive tools to inspect and manipulate stored data, so these are less
portable outside of libgetar. Because transactions are atomic, sqlite
databases are robust to process death.

The sqlite backend should be expected to have moderately fast open
speeds, slow write speeds (for large numbers of independent writes;
use a C++ BulkWriter object to write multiple records
within a single transaction), and fast read speeds.

Directory

The experimental directory backend stores data directly on the
filesystem. Currently, data are only stored uncompressed. Because each
file access occurs in the filesystem, this backend is extremely robust
to process death.

Backend Summary

In summary:

	Zip

	Pros

	Reasonably fast at everything

	“Good” compression ratio

	Cons

	Weak to process death

	Tar

	Pros

	Fast reads and writes

	Resilient

	Cons

	Slow to open with many files in an archive

	No compression

	Sqlite

	Pros

	Fast for reading and opening

	Resilient

	Fast but less-powerful compression (LZ4)

	Cons

	No standard archive-type tools

	Slow for many individual writes (use BulkWriter for bulk writes)

	Directory

	Pros

	Native writing speed

	Extremely resilient

	Cons

	No compression

	Could stress filesystem with many entries

Libgetar Python Module: gtar

	Usage

	GTAR Objects

	Creation

	Simple API

	Advanced API

	Finding Available Records

	Reading Binary Data

	Record Objects

	Tools

	Enums: OpenMode, CompressMode, Behavior, Format, Resolution

Usage

There are currently two main objects to work with in libgetar:
gtar.GTAR archive wrappers and gtar.Record
objects.

GTAR Objects

These wrap input and output to the zip file format and some minor
serialization and deserialization abilities.

	
class gtar.GTAR

	Python wrapper for the GTAR c++ class. Provides
basic access to its methods and simple methods to read and write
files within archives.

The backend is automatically selected based on the suffix of the
given path: if the name ends in ‘.tar’, a tar-format archive will
be created, if it ends in ‘.sqlite’ a sqlite-format archive will
be created, if it ends in ‘/’ a directory structure (filesystem)
“archive” will be created, otherwise a zip-format archive will be
created.

The open mode controls how the file will be opened.

	read: The file will be opened in read-only mode

	write: A new file will be opened for writing, potentially overwriting an existing file of the same name

	append: A file will be opened for writing, adding to the end of a file if it already exists with the same name

	Parameters

	
	path – Path to the file to open

	mode – Open mode: one of ‘r’, ‘w’, ‘a’

	
close(self)

	Close the file this object is writing to. It is safe to
close a file multiple times, but impossible to read from or
write to it after closing.

	
framesWithRecordsNamed(self, names, group=None, group_prefix=None)

	Returns ([record(val) for val in names], [frames]) given a
set of record names names. If only given a single name,
returns (record, [frames]).

	Parameters

	
	names – Iterable object yielding a set of property names

	group – Exact group name to select (default: do not filter by group); overrules group_prefix

	group_prefix – Prefix of group name to select (default: do not filter by group)

	
getBulkWriter(self)

	Get a gtar.BulkWriter context object. These allow for more
efficient writes when writing many records at once.

	
getRecord(self, Record query, index='')

	Returns the contents of the given base record and index.

	Parameters

	
	query (gtar.Record) – Prototypical gtar.Record object describing the record to fetch

	index (string) – Index used to fetch the record (defaults to index embedded in query)

Note

If an index is passed into this function, it takes precedence over the index embedded in the given record.

	
getRecordTypes(self, group=None, group_prefix=None)

	Returns a python list of all the record types (without index
information) available in this archive. Optionally filters
results down to records found with a particular group name, if
requested.

	Parameters

	
	group – Exact group name to select (default: do not filter by group); overrules group_prefix

	group_prefix – Prefix of group name to select (default: do not filter by group)

	
queryFrames(self, Record target)

	Returns a python list of all indices associated with a
given record available in this archive

	Parameters

	target – Prototypical gtar.Record object (the index of which is unused)

	
readBytes(self, path)

	Read the contents of the given location within the archive,
or return None if not found

	Parameters

	path – Path within the archive to write

	
readPath(self, path)

	Reads the contents of a record at the given path. Returns None if
not found. If an array is found and the property is present in
gtar.widths, reshape into an Nxwidths[prop] array.

	Parameters

	path – Path within the archive to write

	
readStr(self, path)

	Read the contents of the given path as a string or return
None if not found.

	Parameters

	path – Path within the archive to write

	
recordsNamed(self, names, group=None, group_prefix=None)

	Returns (frame, [val[frame] for val in names]) for each frame which
contains records matching each of the given names. If only given
a single name, returns (frame, val[frame]) for each found
frame. If a property is present in gtar.widths, returns it
as an Nxwidths[prop] array.

	Parameters

	
	names – Iterable object yielding a set of property names

	group – Exact group name to select (default: do not filter by group); overrules group_prefix

	group_prefix – Prefix of group name to select (default: do not filter by group)

Example:

g = gtar.GTAR('dump.zip', 'r')

grab single property
for (_, vel) in g.recordsNamed('velocity'):
 pass

grab multiple properties
for (idx, (pos, quat)) in g.recordsNamed(['position', 'orientation']):
 pass

	
staticRecordNamed(self, name, group=None, group_prefix=None)

	Returns a static record with the given name. If the property is
found in gtar.widths, returns it as an Nxwidths[prop]
array. Optionally restricts the search to records with the
given group name or group name prefix.

	Parameters

	
	name – Name of the property to find

	group – Exact group name to select (default: do not filter by group); overrules group_prefix

	group_prefix – Prefix of group name to select (default: do not filter by group)

	
writeArray(self, path, arr, mode=cpp.FastCompress, dtype=None)

	Write the given numpy array to the location within the
archive, using the given compression mode. This serializes the
data into the given binary data type or the same binary format
that the numpy array is using.

	Parameters

	
	path – Path within the archive to write

	arr – Array-like object

	mode – Optional compression mode (defaults to fast compression)

	dtype – Optional numpy dtype to force conversion to

Example:

gtar.writeArray('diameter.f32.ind', numpy.ones((N,)))

	
writeBytes(self, path, contents, mode=cpp.FastCompress)

	Write the given contents to the location within the
archive, using the given compression mode.

	Parameters

	
	path – Path within the archive to write

	contents – Bytestring to write

	mode – Optional compression mode (defaults to fast compression)

	
writePath(self, path, contents, mode=cpp.FastCompress)

	Writes the given contents to the given path, converting as
necessary.

	Parameters

	
	path – Path within the archive to write

	contents – Object which can be converted into array or string form, based on the given path

	mode – Optional compression mode (defaults to fast compression)

	
writeRecord(self, Record rec, contents, mode=cpp.FastCompress)

	Writes the given contents to the path specified by the given record.

	Parameters

	
	rec – gtar.Record object specifying the record

	contents – [byte]string or array-like object to write

	mode – Optional compression mode (defaults to fast compression)

	
writeStr(self, path, contents, mode=cpp.FastCompress)

	Write the given string to the given path, optionally
compressing with the given mode.

	Parameters

	
	path – Path within the archive to write

	contents – String to write

	mode – Optional compression mode (defaults to fast compression)

Example:

gtar.writeStr('params.json', json.dumps(params))

When writing many small records at once, a gtar.BulkWriter
object can be used.

	
class gtar.BulkWriter

	Class for efficiently writing multiple records at a time. Works
as a context manager.

	Parameters

	arch – gtar.GTAR archive object to write within

Example:

with gtar.GTAR('traj.sqlite', 'w') as traj, traj.getBulkWriter() as writer:
 writer.writeStr('notes.txt', 'example text')

	
writeArray(self, path, arr, mode=cpp.FastCompress, dtype=None)

	Write the given numpy array to the location within the
archive, using the given compression mode. This serializes the
data into the given binary data type or the same binary format
that the numpy array is using.

	Parameters

	
	path – Path within the archive to write

	arr – Array-like object

	mode – Optional compression mode (defaults to fast compression)

	dtype – Optional numpy dtype to force conversion to

Example:

writer.writeArray('diameter.f32.ind', numpy.ones((N,)))

	
writeBytes(self, path, contents, mode=cpp.FastCompress)

	Write the given contents to the location within the
archive, using the given compression mode.

	Parameters

	
	path – Path within the archive to write

	contents – Bytestring to write

	mode – Optional compression mode (defaults to fast compression)

	
writePath(self, path, contents, mode=cpp.FastCompress)

	Writes the given contents to the given path, converting as
necessary.

	Parameters

	
	path – Path within the archive to write

	contents – Object which can be converted into array or string form, based on the given path

	mode – Optional compression mode (defaults to fast compression)

	
writeRecord(self, Record rec, contents, mode=cpp.FastCompress)

	Writes the given contents to the path specified by the given record.

	Parameters

	
	rec – gtar.Record object specifying the record

	contents – [byte]string or array-like object to write

	mode – Optional compression mode (defaults to fast compression)

	
writeStr(self, path, contents, mode=cpp.FastCompress)

	Write the given string to the given path, optionally
compressing with the given mode.

	Parameters

	
	path – Path within the archive to write

	contents – String to write

	mode – Optional compression mode (defaults to fast compression)

Example:

writer.writeStr('params.json', json.dumps(params))

Creation

Open a trajectory archive for reading
traj = gtar.GTAR('dump.zip', 'r')
Open a trajectory archive for writing, overwriting any dump.zip
in the current directory
traj = gtar.GTAR('dump.zip', 'w')
Open a trajectory archive for appending, if you want to add
to the file without overwriting
traj = gtar.GTAR('dump.zip', 'a')

Note that currently, due to a limitation in the miniz library we use,
you can’t append to a zip file that’s not using the zip64 format, such
as those generated by python’s zipfile module in most cases (it only
makes zip64 if it has to for file size or count constraints; I didn’t
see anything right off the bat to be able to force it to write in
zip64). See Zip vs Zip64 below for solutions.

Simple API

If you know the path you want to read from or store to, you can use
GTAR.readPath() and GTAR.writePath():

with gtar.GTAR('read.zip', 'r') as input_traj:
 props = input_traj.readPath('props.json')
 diameters = input_traj.readPath('diameter.f32.ind')

with gtar.GTAR('write.zip', 'w') as output_traj:
 output_traj.writePath('oldProps.json', props)
 output_traj.writePath('mass.f32.ind', numpy.ones_like(diameters))

If you just want to read or write a string or bytestring, there are methods
GTAR.readStr(), GTAR.writeStr(),
GTAR.readBytes(), and GTAR.writeBytes().

If you want to grab static properties by their name, there is
GTAR.staticRecordNamed():

diameters = traj.staticRecordNamed('diameter')

There are two methods that can be used to quickly get per-frame data for
time-varying quantities:

	GTAR.framesWithRecordsNamed() is useful for “lazy” reading,
because it returns the records and frame numbers which can be processed
separately before actually reading data. This is especially helpful for
retrieving every 100th frame of a file, for example. This is usually the
most efficient way to retrieve data.

(velocityRecord, frames) = traj.framesWithRecordsNamed('velocity')
for frame in frames:
 velocity = traj.getRecord(velocityRecord, frame)
 kinetic_energy += 0.5*mass*numpy.sum(velocity**2)

((boxRecord, positionRecord), frames) = traj.framesWithRecordsNamed(['box', 'position'])
good_frames = filter(lambda x: int(x) % 100 == 0, frames)
for frame in good_frames:
 box = traj.getRecord(boxRecord, frame)
 position = traj.getRecord(positionRecord, frame)
 fbox = freud.box.Box(*box)
 rdf.compute(fbox, position, position)
 matplotlib.pyplot.plot(rdf.getR(), rdf.getRDF())

	GTAR.recordsNamed(): is useful for iterating over all frames
in the archive. It reads and returns the content of the records it finds.

for (frame, vel) in traj.recordsNamed('velocity'):
 kinetic_energy += 0.5*mass*numpy.sum(vel**2)

for (frame, (box, position)) in traj.recordsNamed(['box', 'position']):
 fbox = freud.box.Box(*box)
 rdf.compute(fbox, position, position)
 matplotlib.pyplot.plot(rdf.getR(), rdf.getRDF())

Advanced API

The more complicated API can be used if you have multiple properties
with the same name (for example, a set of low-precision trajectories
for visualization and a less frequent set of dumps in double precision
for restart files).

Finding Available Records

A list of record types (records with blank indices) can be obtained by
the following:

traj.getRecordTypes()

This can be filtered further in something like:

positionRecord = [rec for rec in traj.getRecordTypes() if rec.getName() == 'position'][0]

The list of frames associated with a given record can be accessed as:

frames = traj.queryFrames(rec)

Reading Binary Data

To read binary data (in the form of numpy arrays), use the following
method:

traj.getRecord(query, index="")

This takes a gtar.Record object specifying the path and an
optional index. Note that the index field of the record is nullified
in favor of the index passed into the method itself; usage might look
something like the following:

positionRecord = [rec for rec in traj.getRecordTypes() if rec.getName() == 'position'][0]
positionFrames = traj.queryFrames(positionRecord)
positions = [traj.getRecord(positionRecord, frame) for frame in positionFrames]

Record Objects

These objects are how you discover what is inside an archive and fetch
or store data. Records consist of several fields defining where in the
archive the data are stored, what type the data are, and so
forth. Probably the most straightforward way to construct one of these
yourself is to let the Record constructor itself parse a path within
an archive:

rec = Record('frames/0/position.f32.ind')

	
class gtar.Record

	Python wrapper for the c++ Record class. Provides basic access to
Record methods. Initializes in different ways depending on the
number of given parameters.

	No arguments: default constructor

	1 argument: Parse the given path

	6 arguments: Fill each field of the Record object (group, name, index, behavior, format, resolution)

	
getBehavior(self)

	Returns the behavior field of this object

	
getFormat(self)

	Returns the format field of this object

	
getGroup(self)

	Returns the group field of this object

	
getIndex(self)

	Returns the index field for this object

	
getName(self)

	Returns the name field of this object

	
getPath(self)

	Generates the path of the file inside the archive for this object

	
getResolution(self)

	Returns the resolution field for this object

	
nullifyIndex(self)

	Nullify the index field of this object

	
setIndex(self, index)

	Sets the index field of this object

Tools

gtar.fix

Fix a getar-formatted zip file.

usage: python -m gtar.fix [-h] [-o OUTPUT] input

Command-line zip archive fixer

positional arguments:
 input Input zip file to read

optional arguments:
 -h, --help show this help message and exit
 -o OUTPUT, --output OUTPUT
Output location for fixed zip archive

gtar.cat

Take records from multiple getar-formatted files and place them
into an output file. In case of name conflicts, records from the last
input file take precedence.

usage: cat.py [-h] [-o OUTPUT] ...

Command-line archive concatenation

positional arguments:
 inputs Input files to read

optional arguments:
 -h, --help show this help message and exit
 -o OUTPUT, --output OUTPUT
 File to write to

gtar.copy

Copy each record from one getar-formatted file to another.

usage: python -m gtar.copy [-h] input output

Command-line archive copier or translator

positional arguments:
 input Input file to read
 output File to write to

optional arguments:
 -h, --help show this help message and exit

gtar.read

Create an interactive python shell with the given files opened for
reading.

usage: read.py [-h] ...

Interactive getar-format archive shell

positional arguments:
 inputs Input files to open

optional arguments:
 -h, --help show this help message and exit

Enums: OpenMode, CompressMode, Behavior, Format, Resolution

	
class gtar.OpenMode

	Enum for ways in which an archive file can be opened

	
Read

	

	
Write

	

	
Append

	

	
class gtar.CompressMode

	Enum for ways in which files within an archive can be compressed

	
NoCompress

	

	
FastCompress

	

	
MediumCompress

	

	
SlowCompress

	

	
class gtar.Behavior

	Enum for how properties can behave over time

	
Constant

	

	
Discrete

	

	
Continuous

	

	
class gtar.Format

	Formats in which binary properties can be stored

	
Float32

	

	
Float64

	

	
Int32

	

	
Int64

	

	
UInt8

	

	
UInt32

	

	
UInt64

	

	
class gtar.Resolution

	Resolution at which properties can be recorded

	
Text

	

	
Uniform

	

	
Individual

	

Libgetar C++ API

	GTAR

	Record

	Enums: Behavior, Format, Resolution

	SharedArray

GTAR

	
class GTAR

	Accessor interface for a trajectory archive.

Public Functions

	
GTAR(const std::string &filename, const OpenMode mode)

	Constructor. Opens the file at filename in the given mode. The format of the file depends on the extension of filename.

	
void close()

	Manually close the opened archive (it automatically closes itself upon destruction)

	
void writeString(const std::string &path, const std::string &contents, CompressMode mode)

	Write a string to the given location.

	
void writeBytes(const std::string &path, const std::vector<char> &contents, CompressMode mode)

	Write a bytestring to the given location.

	
void writePtr(const std::string &path, const void *contents, const size_t byteLength, CompressMode mode)

	Write the contents of a pointer to the given location.

	
template<typename iter, typename T>
void writeIndividual(const std::string &path, const iter &start, const iter &end, CompressMode mode)

	Write an individual binary property to the specified location, converting to little endian if necessary.

	
template<typename T>
void writeUniform(const std::string &path, const T &val)

	Write a uniform binary property to the specified location, converting to little endian if necessary.

	
template<typename T>
SharedArray<T> readIndividual(const std::string &path)

	Read an individual binary property to the specified location, converting from little endian if necessary.

	
template<typename T>
SharedPtr<T> readUniform(const std::string &path)

	Read a uniform binary property to the specified location, converting from little endian if necessary.

	
SharedArray<char> readBytes(const std::string &path)

	Read a bytestring from the specified location.

	
std::vector<Record> getRecordTypes() const

	Query all of the records in the archive. These will all have empty indices.

	
std::vector<std::string> queryFrames(const Record &target) const

	Query the indices associated with a given record. The record is not required to have a null index.

	
class BulkWriter

	
Public Functions

	
BulkWriter(GTAR &archive)

	Create a new BulkWriter on an archive. Only one should exist for any archive at a time.

	
~BulkWriter()

	Clean up the BulkWriter data. Causes all writes to be performed.

	
void writeString(const std::string &path, const std::string &contents, CompressMode mode)

	Write a string to the given location.

	
void writeBytes(const std::string &path, const std::vector<char> &contents, CompressMode mode)

	Write a bytestring to the given location.

	
void writePtr(const std::string &path, const void *contents, const size_t byteLength, CompressMode mode)

	Write the contents of a pointer to the given location.

	
template<typename iter, typename T>
void writeIndividual(const std::string &path, const iter &start, const iter &end, CompressMode mode)

	Write an individual binary property to the specified location, converting to little endian if necessary.

	
template<typename T>
void writeUniform(const std::string &path, const T &val)

	Write a uniform binary property to the specified location, converting to little endian if necessary.

Record

	
class Record

	Simple class for a record which can be stored in an archive.

Public Functions

	
Record()

	Default constructor: initialize all strings to empty, behavior to Constant, format to UInt8, and resolution to Text

	
Record(const std::string &path)

	Create a record from a path (inside the archive), parsing the path into the various fields

	
Record(const std::string &group, const std::string &name, const std::string &index, Behavior behavior, Format format, Resolution resolution)

	Create a record directly from the full set of elements.

	
Record(const Record &rhs)

	Copy constructor.

	
void operator=(const Record &rhs)

	Assignment operator.

	
bool operator==(const Record &rhs) const

	Equality.

	
bool operator!=(const Record &rhs) const

	Inequality.

	
bool operator<(const Record &rhs) const

	Comparison.

	
void copy(const Record &rhs)

	Copy all fields from rhs into this object.

	
std::string nullifyIndex()

	Set our index to the empty string.

	
Record withNullifiedIndex() const

	Return a copy of this object, but with an empty string for its index

	
std::string getPath() const

	Construct a path (for inside an archive) from this object’s various fields

	
std::string getGroup() const

	Get the stored group field.

	
std::string getName() const

	Get the stored name field.

	
std::string getIndex() const

	Get the stored index field.

	
Behavior getBehavior() const

	Get the stored behavior field.

	
Format getFormat() const

	Get the stored format field.

	
Resolution getResolution() const

	Get the stored resolution field.

	
void setIndex(const std::string &index)

	Set the index field for this Record object.

Enums: Behavior, Format, Resolution

	
enum gtar::Behavior

	Time behavior of properties.

Values:

	
enumerator Constant

	

	
enumerator Discrete

	

	
enumerator Continuous

	

	
enum gtar::Format

	Binary formats in which properties can be stored.

Values:

	
enumerator Float32

	

	
enumerator Float64

	

	
enumerator Int32

	

	
enumerator Int64

	

	
enumerator UInt8

	

	
enumerator UInt32

	

	
enumerator UInt64

	

	
enum gtar::Resolution

	Level of detail of property storage.

Values:

	
enumerator Text

	

	
enumerator Uniform

	

	
enumerator Individual

	

SharedArray

	
template<typename T>
class SharedArray

	Generic reference-counting shared array implementation for arbitrary datatypes.

Subclassed by gtar::SharedPtr< T >

Public Functions

	
inline SharedArray()

	Default constructor. Allocates nothing.

	
inline SharedArray(T *target, size_t length)

	Target constructor: allocates a new SharedArrayShim for the given pointer and takes ownership of it.

	
inline SharedArray(const SharedArray<T> &rhs)

	Copy constructor: make this object point to the same array as rhs, increasing the reference count if necessary

	
inline SharedArray(const SharedPtr<T> &rhs)

	Initialize from SharedPtr: make this object point to the same shim as rhs, increasing the reference count if necessary

	
inline ~SharedArray()

	Destructor: decrement the reference count and deallocate if we are the last owner of the pointer

	
inline void copy(const SharedArray<T> &rhs)

	Non-operator form of assignment.

	
inline bool isNull()

	Returns true if m_shim is null or m_shim’s target is null.

	
inline void operator=(const SharedArray<T> &rhs)

	Assignment operator: make this object point to the same thing as rhs (and deallocate our old memory if necessary)

	
inline iterator begin()

	Returns a standard style iterator to the start of the array.

	
inline iterator end()

	Returns a standard style iterator to just past the end of the array.

	
inline T *get()

	Returns the raw pointer held (NULL otherwise)

	
inline size_t size() const

	Returns the size, in number of objects, of this array.

	
inline void release()

	Release our claim on the pointer, including decrementing the reference count

	
inline T *disown()

	Stop managing this array and give it to C.

	
inline void swap(SharedArray<T> &target)

	Swap the contents of this array with another.

	
inline T &operator[](size_t idx)

	Access elements by index.

	
inline const T &operator[](size_t idx) const

	Const access to elements by index.

Known Issues and Solutions

Zip Central Directories

The zip file format stores a “table of contents” known as a central
directory at the end of the file. This allows zip archives to be
“random-access” in the sense that you don’t have to visit every file
in the archive to know what files exist in the archive, but if a
process is terminated forcefully (kill -9 or hitting a wall clock
limit), libgetar will not get an opportunity to write the central
directory. In this case, the zip file will be unreadable until you
rebuild the central directory using the command line tool zip
-FF or the python module gtar.fix (which uses zip -FF
and deletes all data from any frames that were removed in the
process). Example:

python -m gtar.fix broken.zip -o fixed.zip

Some very large (>8GB) zip files seem to be unable to be fixed, even
with zip -FF. In this case, to recover your data you can extract
it all using the jar tool, which does not even look at the central
directory when extracting:

mkdir temp && cd temp
jar xvf ../broken.zip
zip -mr fixed.zip -xi ./*

Zip vs Zip64

The zip archives libgetar writes are always in the zip64 format. It
can read “normal” zip archives just fine, but appending to them will
not work since converting an archive in-place is unsafe in case of
errors. Running the gtar.fix or
gtar.copy.main() python modules will always convert a file to
zip64 format. Example:

python -m gtar.copy 32bit.zip 64bit.zip

basic_string::_S_construct null not valid

This is due to passing in a python string object instead of a bytes
object and is probably an error on my part. These errors look like
this:

terminate called after throwing an instance of 'std::logic_error'
 what(): basic_string::_S_construct null not valid

If you see any of those, let me know!

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 gtar	

 	
 	
 gtar.cat	

 	
 	
 gtar.copy	

 	
 	
 gtar.fix	

 	
 	
 gtar.read	

Index

 B
 | C
 | F
 | G
 | M
 | N
 | O
 | Q
 | R
 | S
 | W

B

 	
 	Behavior (class in gtar)

 	Behavior.Constant (in module gtar)

 	
 	Behavior.Continuous (in module gtar)

 	Behavior.Discrete (in module gtar)

 	BulkWriter (class in gtar)

C

 	
 	close() (gtar.GTAR method)

 	CompressMode (class in gtar)

 	CompressMode.FastCompress (in module gtar)

 	
 	CompressMode.MediumCompress (in module gtar)

 	CompressMode.NoCompress (in module gtar)

 	CompressMode.SlowCompress (in module gtar)

F

 	
 	Format (class in gtar)

 	Format.Float32 (in module gtar)

 	Format.Float64 (in module gtar)

 	Format.Int32 (in module gtar)

 	
 	Format.Int64 (in module gtar)

 	Format.UInt32 (in module gtar)

 	Format.UInt64 (in module gtar)

 	Format.UInt8 (in module gtar)

 	framesWithRecordsNamed() (gtar.GTAR method)

G

 	
 	getBehavior() (gtar.Record method)

 	getBulkWriter() (gtar.GTAR method)

 	getFormat() (gtar.Record method)

 	getGroup() (gtar.Record method)

 	getIndex() (gtar.Record method)

 	getName() (gtar.Record method)

 	getPath() (gtar.Record method)

 	getRecord() (gtar.GTAR method)

 	getRecordTypes() (gtar.GTAR method)

 	getResolution() (gtar.Record method)

 	GTAR (class in gtar)

 	
 gtar.cat

 	module

 	
 gtar.copy

 	module

 	
 gtar.fix

 	module

 	
 gtar.read

 	module

 	gtar::Behavior (C++ enum)

 	gtar::Behavior::Constant (C++ enumerator)

 	gtar::Behavior::Continuous (C++ enumerator)

 	gtar::Behavior::Discrete (C++ enumerator)

 	gtar::Format (C++ enum)

 	gtar::Format::Float32 (C++ enumerator)

 	gtar::Format::Float64 (C++ enumerator)

 	gtar::Format::Int32 (C++ enumerator)

 	gtar::Format::Int64 (C++ enumerator)

 	gtar::Format::UInt32 (C++ enumerator)

 	gtar::Format::UInt64 (C++ enumerator)

 	gtar::Format::UInt8 (C++ enumerator)

 	gtar::GTAR (C++ class)

 	gtar::GTAR::BulkWriter (C++ class)

 	gtar::GTAR::BulkWriter::BulkWriter (C++ function)

 	gtar::GTAR::BulkWriter::writeBytes (C++ function)

 	gtar::GTAR::BulkWriter::writeIndividual (C++ function)

 	gtar::GTAR::BulkWriter::writePtr (C++ function)

 	gtar::GTAR::BulkWriter::writeString (C++ function)

 	gtar::GTAR::BulkWriter::writeUniform (C++ function)

 	gtar::GTAR::BulkWriter::~BulkWriter (C++ function)

 	gtar::GTAR::close (C++ function)

 	gtar::GTAR::getRecordTypes (C++ function)

 	gtar::GTAR::GTAR (C++ function)

 	
 	gtar::GTAR::queryFrames (C++ function)

 	gtar::GTAR::readBytes (C++ function)

 	gtar::GTAR::readIndividual (C++ function)

 	gtar::GTAR::readUniform (C++ function)

 	gtar::GTAR::writeBytes (C++ function)

 	gtar::GTAR::writeIndividual (C++ function)

 	gtar::GTAR::writePtr (C++ function)

 	gtar::GTAR::writeString (C++ function)

 	gtar::GTAR::writeUniform (C++ function)

 	gtar::Record (C++ class)

 	gtar::Record::copy (C++ function)

 	gtar::Record::getBehavior (C++ function)

 	gtar::Record::getFormat (C++ function)

 	gtar::Record::getGroup (C++ function)

 	gtar::Record::getIndex (C++ function)

 	gtar::Record::getName (C++ function)

 	gtar::Record::getPath (C++ function)

 	gtar::Record::getResolution (C++ function)

 	gtar::Record::nullifyIndex (C++ function)

 	gtar::Record::operator!= (C++ function)

 	gtar::Record::operator< (C++ function)

 	gtar::Record::operator= (C++ function)

 	gtar::Record::operator== (C++ function)

 	gtar::Record::Record (C++ function), [1], [2], [3]

 	gtar::Record::setIndex (C++ function)

 	gtar::Record::withNullifiedIndex (C++ function)

 	gtar::Resolution (C++ enum)

 	gtar::Resolution::Individual (C++ enumerator)

 	gtar::Resolution::Text (C++ enumerator)

 	gtar::Resolution::Uniform (C++ enumerator)

 	gtar::SharedArray (C++ class)

 	gtar::SharedArray::begin (C++ function)

 	gtar::SharedArray::copy (C++ function)

 	gtar::SharedArray::disown (C++ function)

 	gtar::SharedArray::end (C++ function)

 	gtar::SharedArray::get (C++ function)

 	gtar::SharedArray::isNull (C++ function)

 	gtar::SharedArray::operator= (C++ function)

 	gtar::SharedArray::operator[] (C++ function), [1]

 	gtar::SharedArray::release (C++ function)

 	gtar::SharedArray::SharedArray (C++ function), [1], [2], [3]

 	gtar::SharedArray::size (C++ function)

 	gtar::SharedArray::swap (C++ function)

 	gtar::SharedArray::~SharedArray (C++ function)

M

 	
 	
 module

 	gtar.cat

 	gtar.copy

 	gtar.fix

 	gtar.read

N

 	
 	nullifyIndex() (gtar.Record method)

O

 	
 	OpenMode (class in gtar)

 	OpenMode.Append (in module gtar)

 	
 	OpenMode.Read (in module gtar)

 	OpenMode.Write (in module gtar)

Q

 	
 	queryFrames() (gtar.GTAR method)

R

 	
 	readBytes() (gtar.GTAR method)

 	readPath() (gtar.GTAR method)

 	readStr() (gtar.GTAR method)

 	Record (class in gtar)

 	
 	recordsNamed() (gtar.GTAR method)

 	Resolution (class in gtar)

 	Resolution.Individual (in module gtar)

 	Resolution.Text (in module gtar)

 	Resolution.Uniform (in module gtar)

S

 	
 	setIndex() (gtar.Record method)

 	
 	staticRecordNamed() (gtar.GTAR method)

W

 	
 	writeArray() (gtar.BulkWriter method)

 	(gtar.GTAR method)

 	writeBytes() (gtar.BulkWriter method)

 	(gtar.GTAR method)

 	writePath() (gtar.BulkWriter method)

 	(gtar.GTAR method)

 	
 	writeRecord() (gtar.BulkWriter method)

 	(gtar.GTAR method)

 	writeStr() (gtar.BulkWriter method)

 	(gtar.GTAR method)

 nav.xhtml

 Table of Contents

 		
 Welcome to libgetar’s documentation!

 		
 Installation and Basic Usage

 		
 Installation

 		
 Versioned releases

 		
 From source

 		
 Documentation

 		
 The GETAR file format: GEneric Trajectory ARchives

 		
 The GETAR Format

 		
 GETAR Archives

 		
 Records

 		
 Record Names

 		
 Record Resolutions

 		
 Record Behaviors

 		
 Archive Storage Paths

 		
 Supported libgetar Backends

 		
 Zip

 		
 Tar

 		
 Sqlite

 		
 Directory

 		
 Backend Summary

 		
 Libgetar Python Module: gtar

 		
 Usage

 		
 GTAR Objects

 		
 Record Objects

 		
 Tools

 		
 Enums: OpenMode, CompressMode, Behavior, Format, Resolution

 		
 Libgetar C++ API

 		
 GTAR

 		
 Record

 		
 Enums: Behavior, Format, Resolution

 		
 SharedArray

 		
 Known Issues and Solutions

 		
 Zip Central Directories

 		
 Zip vs Zip64

 		
 basic_string::_S_construct null not valid

_static/minus.png

_static/plus.png

_static/file.png

